Для профессионального ухода за зубами используются разные способы и инструменты, среди которых одно из главных мест занимается шлифовка эмали с последующей полировкой. Методика используется в качестве самостоятельной или одновременно с другими манипуляциями, например, после удаления больших отложений камня. Часто способ используется во время подготовки к другим процессам, например, протезированию или реставрации винирами.
Шлифовка выполняется для первичной обработки, удаления неровностей и шероховатостей, микротрещин. На этом этапе устраняются камень и мягкий налет, происходит профилактика от кариеса. Полировка осуществляется после шлифования. Они окончательно выравнивает неровности эмали, устраняет мелкие недостатки. Кроме того, этот шаг выполняет легкий отбеливающий эффект, убирая отложения. Но повышения цвета происходит небольшое, так как восстанавливается естественный оттенок. Если целью процедуры выступает серьезное отбеливание, далее врач использует иные методы и препараты.
Инструменты и особенности процедуры
Выделяются четыре виды процедуры, включающей в себя шлифовку и полирование эмали:
- традиционный механический;
- ультразвуковой;
- воздушный;
- лазерный (один из наиболее безопасных).
К традиционному методу прибегают при наличии большого объема отложений. Для этого стоматолог использует наконечники разного типа и бормашину. Под воздействием абразивного покрытия отложения снимаются, обнажая эмаль и восстанавливая цвет зубов. Стоимость процедуры доступная, но о время чистки Пациент может ощущать дискомфорт. Поэтому такие манипуляции не рекомендуются людям, чувствительность тканей у которых повышенная. Если другим методом убрать камни не получается, возможно использование местной анестезии.
Ультразвуковой способ относится к безболезненным и эффективным. Процедура выполняется при помощи специального аппарата и сменных наконечников. УЗ воздействие позволяет работать с труднодоступными участками, убирать налет из поддесневой области. Пациент не ощущает дискомфорт или боль, процедура проводится быстро.
Воздушный способ относится к наиболее распространенным. Поверхность обрабатывается сильным потоком воздуха по давлением, с применением абразивной смеси. Время на работу затрачивается мало, процесс не причиняет боли или дискомфорта. Достигается легкий эффект осветления.
Лазерная шлифовка эмали относится к дорогостоящим процедурам. Для выполнения манипуляций используется специальное оборудование, при помощи которого можно убрать сложный налет на всех участках ряда. Эмаль отбеливается, отложения скапливаются намного медленнее.
При выполнении работ стоматологом используется специальный инструментарий. При лазерном и УЗ способах дополнительные средства не нужны, достаточно используемого оборудования, уже комплектуемого всем необходимым, включая насадки.
При воздушном способе применяют абразивные порошки с зерном различной фракции. Для устранения камня и больших объемов налета выбираются составы с крупными частицами. Для финишной полировки – мелкофракционные порошки. Также различают наконечники и пасты для обработки. На плоских участках используются резиновые чашеобразные насадки, для бугров – с конусообразной формой. Труднодоступные места очищают при помощи штипс и полос. При выборе паст надо обратить внимание на цвет, указывающий на зернистость. Желтые пасты предназначены для мягкой финишной полировки, синие – грубые, используемые для начального удаления отложений. При необходимости применяются промежуточные составы зеленого и красного цветов.
Внутриротовая воздушно-абразивная обработка: методы, приборы, возможности применения
Согласно «Глоссарию терминов в ортопедической стоматологии» воздушно-абразивная обработка представляет собой процесс обработки поверхности материала посредством использования абразивных частиц, приводимых в движение давлением воздуха или других газов. Второе название этого метода – пескоструйная обработка. В зуботехнических лабораториях аппараты для пескоструйной обработки используются для очистки материалов и остатков процесса фрезеровки, повышения шероховатости внутренней поверхности коронок и ряда других практических целей. В условиях клинического приема воздушная абразия обеспечивается за счет одновременной подачи абразивных частиц и водной струи, которая позволяет контролировать их направление. Исходя из клинической потребности, существует несколько видов абразивных частиц, которые несколько отличаются своим действием.
В данной статье мы опишем доступный на рынке инструментарий для проведения воздушно-абразивной обработки, рассмотрим доказательства относительно целесообразности проведения данной процедуры, а также проанализируем клинические протоколы применения метода в стоматологической практике. Воздухо-абразивная обработка, кроме всего прочего, это еще и инструмент для проведения профессиональной гигиены полости рта, однако в данной статье мы рассмотрим конкретные возможности данного метода в ортопедической стоматологии.
Аппараты для воздухо-абразивной обработки
На данный момент на рынке доступно несколько аппаратов для воздушно-абразивной обработки, не предусматривающих потребность дополнительного использования водной струи. Данные аппараты включают MicroEtcher IIA (Danville Materials / Zest Dental Solutions) и EtchMaster (Groman Dental). Эти системы эффективны для придания шероховатости и очистки, хотя они также характеризуются высоким уровнем загрязнения одежды как доктора, так и пациента в ходе их использования. Для минимизации данного эффекта лучше всего использовать аппараты с дополнительной подачей водного потока. Представителями таковых являются PrepStart H2O (Danville Materials / Zest Dental Solutions), AquaCare (Velopex), RONDOflex plus 360 (KaVo Kerr), Bioclear Blaster (Bioclear).
Эффективность подобных аппаратов зависит от механизма смешивания частиц, давления воздуха, уровня плотности потока частиц и воды. Например, в одних устройствах смешивание частиц происходит за счет формирования вихревой камеры внутри аппарата, в то время как другие обеспечивают смешивание за счет вибрационного эффекта. Кроме того, одни воздухоабразивные системы являются полностью автономными, в то время как другие можно подключать к стоматологической установке. В ходе проведения анализа литературы авторам данной статьи не удалось найти публикаций, касающихся сравнения эффективности процедур воздушной абразии, предусматривающих и не предусматривающих дополнительное использования водного потока. При этом нужно понимать, что основная цель водного потока состоит лишь в контроле уровня распространения частиц.
Автономные устройства
Преимущество автономного устройства состоит в его выраженной функциональной гибкости и возможностях регулировки таких параметров, как давление воздуха, скорость потока частиц и скорость подачи воды. Две широко используемые модели данных аппаратов – PrepStart H2O и AquaCare содержат резервуар для хранения абразивных частиц и жидкости, и для работы требуют только подвода потока воздуха. Оба этих устройства активируются нажатием ножной педали. Отличаются данные аппараты лишь тем, что в дизайне первого предполагается наличие лишь одного резервуара, который можно наполнять разными типами абразивных частиц, а дизайн второго характеризуется наличием нескольких таких резервуаров, в которых могут содержаться одновременно сразу несколько видов абразивного вещества. Что касается инфекционного контроля, то эти устройства имеют съемные наконечники, которые можно стерилизовать в автоклаве. PrepStart H2O использует резервуар для воды, который заполняется пользователем, поэтому в конце каждого дня шланги следует промывать дезинфицирующим раствором. Подача воды в аппарате AquaCare проводится параллельно со специальной жидкостью, содержащей этанол, следовательно, обеззараживание шлангов происходит прямо во время работы.
Устройства, подключающиеся к стоматологической установке
Устройства, подключающиеся к стоматологической установке, имеют преимущества, заключающиеся в том, что они требуют меньшего пространства в стоматологическом кабинете и не утрудняют движения врача во время клинического приема. Примерами подобных аппаратов являются RONDOflex plus 360 и Bioclear Blaster. Данные устройства оснащены резервуарами для их заполнения абразивными частицами, а потоки воздуха и воды идут из стоматологической установки. Также данные аппараты имеют съемные наконечники, которые можно автоклавировать, или же они подлежат возможности автоклавирования во всей своей комплектации.
Абразивные частицы
Для проведения процедуры воздушно-абразивной обработки можно использовать несколько типов абразивных частиц, которые отличаются своим уровнем абразивности. Оксид алюминия является наиболее распространенным агентом, используемым в данных целях, но кроме него могут применяется и другие частицы, характеризующиеся несколько меньшим уровнем абразивности, с помощью которых, например, можно удалить биопленку на поверхности зуба.
Оксид алюминия
Оксид алюминия представляет собой керамическую частицу, которая является наиболее абразивным агентом, применяемым для процедуры внутриротовой воздушно-абразивной обработки. Данные частицы характеризуются неправильной формой c наличием неровных граней, что и обеспечивает их абразивность. Плотность оксида алюминия составляет 3,95 г / см2. Средний диаметр таковых варьирует от 30 мкм до 90 мкм, причем более крупные частицы являются и более абразивными. Данный тип абразивного агента используется для препарирования зуба, редукции твердых тканей, удаления нежелательных контаминантов. Кроме того, частицы алюминий оксида позволяют достичь более шероховатой поверхности определенных стоматологических материалов, например, металлов, керамики и композитов.
Стекло
Различные формы частиц стекла также были тщательно изучены на предмет возможности их применения в процессе воздушно-абразивной обработки. Стеклянные частицы характеризуются сферической формой и меньшей плотностью по сравнению с частицами оксида алюминия. Средний размер частиц составляет от 50 мкм до 90 мкм. Учитывая меньший уровнем абразивности частиц стекла, они полностью безопасны для эмали и дентина зуба. Поэтому данные частицы чаще используют с целью очистки поверхности, при которой уровень повреждения поверхностей должен быть минимизирован, например, для удаления излишков цемента или налета. Кроме того, частицы стекла можно применять и для очистки металлических инструментов. Частицы биоактивного стекла также исследовались на предмет своих антибактериальных свойств и реминерализационного потенциала. Кроме того, данные агенты используются для обтурации дентинных тубул, чтобы минимизировать имеющиеся симптомы гиперчувствительности.
Частицы для проведения чистки
Существует несколько типов абразивных частиц, предназначенных исключительно для проведения гигиенической чистки, например, такие как бикарбонат натрия, глицин, фосфосиликат кальция-натрия, карбонат кальция и тригидроксид алюминия. Лабораторные исследования продемонстрировали, что при этом абразивность всех этих частиц за исключением глицина, достаточна высока для того, чтобы модифицировать поверхность полимеризованного композита или стеклоиономера. Но несмотря на это, данные частицы идеально подходят для удаления зубного налета до начала выполнения реставрации.
Доказательства влияния воздушно-абразивной обработки на бондинговую связь
Данные о влияние воздушно-абразивной обработки на силу бондинговой связи с эмалью и дентином являются весьма противоречивыми. Такой эффект может быть спровоцирован тем, что результаты проведенных анализов зависят от типа используемого адгезива и протоколов его применения.
Предыдущие исследования
Исследования, касающиеся изучения прочности бондинговой связи на сдвиг при проведении воздушно-абразивной обработки, предоставляют частично противоречивые результаты. Так, Mujdeci и Goka сообщили, что воздушная абразия (частицами оксида алюминия размером 25 мкм при давлении 120 фунт / кв. дюйм) позволяет увеличить прочность связи с эмалью и дентином в случаях реализации протоколов тотального травления. Souza-Zaroni и коллеги сообщили об аналогичном эффекте частиц оксида алюминия (размером 27,5 мкм при давлении 60 фунт / кв. дюйм) на прочность связи с эмалью при использовании самопротравливающих бондинговых систем, однако подобного результата не было зарегистрировано в случаях анализа адгезивов, требующих проведения предварительной протравки и смывания травящего агента.
Но, с другой стороны, Nikaido и коллеги обнаружили, что воздушно-абразивная обработка (при давлении 41,8 фунт / кв. дюйм) посредством стеклянных сферических частиц диаметром 50 мкм наоборот значительно уменьшает прочность адгезивной связи с эмалью и дентином (при использовании систем, предполагающих предварительное проведение этапа протравки), а частицы оксида алюминия с диаметром пор 50 мкм уменьшают силу бондинговой связи с эмалью, при этом не влияя на прочность соединения с дентином. Результаты сканирующей электронной микроскопии позволяют предположить потенциально возможное ослабление структуры зуба после воздухо-абразивной обработки, что соответственно может снижать и силу адгезивной связи. Roeder и коллеги сообщили, что когда вместо травящего агента на основе ортофосфорной кислоты использовалась воздушно-абразивная обработка (оксидом алюминия при давлении 120 фунт / кв. дюйм), то уровень силы бондингового соединения с эмалью и дентином значительно снижался. Некоторые исследования свидетельствуют об отсутствии какого-либо эффекта на силу сцепления между композитом и структурами зуба после проведения воздушно-абразивной обработки. Так Los и Barkmeier не зафиксировали никакого влияния на связь самопротравляющего бонда с дентином при предварительной обработке поверхности зуба посредством частиц алюминий оксида размером 50 мкм при давлении 60 фунтов на кв. дюйм или частиц гидроксиапатита размером от 20 до 40 мкм. Аналогичные результаты были отмечены также Roeder и коллегами относительно частиц алюминий оксида размером 27 и 50-мкм оксид алюминия при давлении 120 фунтов / кв. дюйм.
Лабораторные исследования
В ходе подготовки данного обзора также было проведено лабораторное исследование для изучения влияния воздушной абразии на силу бондинговой связи с эмалью (при предварительной ее протравке) и с дентином (при предварительной протравке и при использовании самопротравляющихся систем). После получения одобрения по стороны института, было проведено сегментацию удаленных зубов для формирования плоских поверхностей эмали (n = 20) и дентина (n = 40), которые затем полировали силиконовыми насадками. Половину исследуемых образцов (для эмали n = 10, для дентина n = 20) обрабатывали с помощью аппарат PrepStart H2O в течение 10 секунд частицами оксида алюминия размером 50 мкм (Danville Materials / Zest Dental Solutions) при давлении 60 фунтов на квадратный дюйм, после чего их промывали. Все образцы эмали (n = 20) протравливали 37% фосфорной кислотой (Scotchbond Universal Etchant, 3M Oral Care) в течение 30 секунд. Часть образцов дентина также протравливали (n = 20) 37% -ной фосфорной кислотой в течение 15 секунд перед нанесением адгезива, а часть (n = 20) – обрабатывали сампотравливающимся бондом без предварительного травления. Все образцы, протравленные ортофосфорной кислотой, промывали в течение 10 секунд под струей воздуха и воды.
На все образцы наносили один и тот же адгезив (Prelude One, Danville Materials / Zest Dental Solutions), который после полимеризировали лампой (Elipar S10, 3M) с выходной мощностью > 800 мВт/см2. Цилиндрический образец композита диаметром 2,35 мм (Prestige, Danville Materials / Zest Dental Solutions) наносили на обработанные поверхности образцов и полимеризировали в течение 20 секунд. Образцы хранили влажными при 37°C в течение 24 часов и затем термоциклировали (5ºC и 55ºC, 15-секундное время выдержки, 10000 циклов), после чего они подвергались нагрузке на сдвиг до разрушения связи посредством специально разработанного универсального испытательного аппарата (Instron 5565, Instron). В конце образцы изучались при помощи сканирующей электронной микроскопии (СЭМ). Т-критерий не выявил различий в прочности бондинговой связи при проведении воздушно-абразивной обработки эмали и без таковой (P = 0,437), а односторонний анализ ANOVA подтвердил аналогичные результаты относительно дентина (P = 0,515). Так, при обработке эмали сила связи составляла 28,4±6,7 МПа, а без таковой — 30,4±4,5 МПа. Что же касается дентина, то в случаях протравки и абразивной обработки сила адгезивного соединения достигала 27,3±5,2 МПа, а без таковой — 24,9±9,8 МПА, а в случаях применения самопротравливающего агента с воздушной абразией — 22,8±7,2 МПа, и без таковой — 28,9±3,6 МПа. Результаты СЭМ показали, что структура эмали дентина становиться более шероховатой после воздухоабразивной обработки, и текстура таковых остается специфической даже после протравливания ортофосфорной кислотой (фото 1-10). Но несмотря на более высокую шероховатость, она практически никак не повлияла на величину адгезивной связи, определенную по параметру силы сдвига. Можно лишь предположить, что адгезия в случаях использования самопротравливающихся бондов становиться лишь незначительно сильнее, что также было установлено в исследованиях de Souza-Zaroni та коллег.
Фото 1. Вид образца эмали перед протравливанием и проведением воздушно-абразивной обработки.
Фото 2. Вид образца эмали после воздушно-абразивной обработки перед протравливанием.
Фото 3. Вид образца эмали после протравливания без проведения воздушно-абразивной обработки.
Фото 4. Вид образца эмали после протравливания и проведения воздушно-абразивной обработки.
Фото 5. Вид образца эмали после протравливания и проведения воздушно-абразивной обработки при большем увеличении.
Фото 6. Вид образца дентина перед протравливанием и проведением воздушно-абразивной обработки.
Фото 7. Вид образца дентина перед протравливанием и проведением воздушно-абразивной обработки.
Фото 8. Вид образца дентина после протравливания без проведения воздушно-абразивной обработки.
Фото 9. Вид образца дентина после протравливания и проведения воздушно-абразивной обработки.
Фото 10. Вид образца дентина после протравливания и проведения воздушно-абразивной обработки при большем увеличении.
Клинические применения
Препарирование полости
Клинические преимущества препарирования полости посредством воздушно-абразивной обработки состоят в обеспечении более консервативного подхода к редукции твердых тканей. В нескольких исследованиях была изучена способность абразивных частиц селективно удалять кариозный дентин, при этом не затрагивая здоровые ткани зуба, однако таковая оказалась неспецифической. В одном исследовании даже сообщалось, что частицы алюминия оксида в большей мере удаляли здоровые ткани дентина и эмали, нежели пораженные кариесом. Конечно, воздушно-абразивный метод препарирования занимает больше времени, нежели препарирование с использованием бора, однако на эффективность данного процесса влияет целый ряд параметров. Во-первых, «режущая» способность воздушной абразии зависит от давления воздуха: на данный момент рекомендуемый уровень давления для препарирования составляет 100 фунтов на квадратный дюйм. Скорость потока частиц также может влиять на эффективность препарирования, но ее необходимо регулировать в зависимости от давления воздуха. Если скорость потока частиц увеличивается без достаточного давления воздуха, объем частиц будет недостаточно перемещаться, а дополнительные частицы будут провоцировать только увеличение объема пыли. Обеспечение наличия достаточного количества абразивных частиц в накопителе устройства до и во время препарирования также крайне важно, поскольку это непосредственно влияет на скорость потока частиц. Наконец, угол, под которым направлено рабочую часть насадки относительно поверхности зуба, и расстояние до последнего также определяют эффективность препарирования. Позиционирование сопла под углом 60 градусов к поверхности позволяет проводить эффективную V-образную редукцию тканей при расстоянии к зубу до 5 мм. Но одним из главных преимуществ воздушно-абразивного препарирования является комфорт пациента, особенно в случаях, когда не использовалась анестезия.
Очистка после препарирования
Воздушно-абразивную обработку также можно использовать для дополнительной очистки зубов после препарирования и перед нанесением адгезива. Данный подход позволяет удалить остатки прежних пломб, дисколорации и временный цемент (фото 11-14). Кроме того, абразивные частицы позволяют сгладить внутренние поверхности культи, что в результате обеспечивает лучшую адаптацию материала, используемого для реставрации (фото 15-16). Учитывая, что феномен адгезии крайне чувствителен к чистоте поверхности, можно предположить, что с данной точки зрения, воздушная абразия все же сопутствует достижению более эффективных результатов стоматологического лечения.
Фото 11. Воздушно-абразивная обработка эмали.
Фото 12. Вид поверхности эмали после воздушно-абразивной обработки перед протравливанием.
Фото 13. Вид до проведения воздушно-абразивной обработки.
Фото 14. Вид после проведения воздушно-абразивной обработки.
Фото 15. Вид полостей до проведения воздушно-абразивной обработки.
Фото 16. Вид полостей после проведения воздушно-абразивной обработки.
Удаление биопленки
Воздушно-абразивную обработку тригидроксидом алюминия можно использовать для удаления зубного налета, незначительного зубного камня, нависающих краев эмали, дефектных остатков реставраций и прокладок, а также для своеобразной ретракции мягких тканей. Удаление биопленки также позволяет улучшить силу бондинговой связи и минимизировать последующий эффект микроподтекания. Учитывая сложности с визуализацией биопленки, для ее идентификации рекомендовано использовать разные красители, которые следует наносить по несколько раз (фото 17-19). Учитывая, что абразивные частицы за исключением глицина и бикарбоната натрия, могут изменять поверхность эмали, следует избегать повторного применения красящих агентов после проведения воздушно-абразивной обработки, поскольку они могут вызвать появление дисколораций.
Фото 17. Визуализация налета при помощи красителя.
Фото 18. Воздушно-абразивная обработка при помощи алюминий тригидроксида для удаления биопленки.
Фото 19. Вид после проведения воздушно-абразивной обработки.
Резюме
Воздушно-абразивная обработка является одним из методом препарирования зубов, а также дополнительным методом повышения прогнозированности функционирования композитных реставраций. Несмотря на то, что данные об улучшении бондинговой связи после проведения воздушно-абразивной обработки являются противоречащими, данный метод как минимум позволяет очистить поверхность зуба после проведения препарирования, а также избежать потребности в проведении анестезии в некоторых случаях. При использовании возможностей воздушной абразии следует оптимизировать параметры используемого аппарата для достижения необходимых результатов вмешательства.
Авторы: Chan-Te Huang, DDS Jihyon Kim, DDS Celin Arce, DDS, MS Nathaniel C. Lawson, DMD, PhD
Показания и противопоказания
Процедуру по шлифовке и последующей полировке поверхности эмали показано выполнять в следующих случаях:
- наличие твердых, мягких отложений;
- состояние после пломбировки;
- в качестве профилактики при ношении брекетов;
- перед протезированием для исключения осложнений, развития кариеса, болезней мягких тканей;
- для регулярного ухода, восстановления естественного оттенка эмали, повышения эстетики ряда.
К противопоказаниям к выполнению процедуры относятся:
- состояние глубокого поражения кариесом, множественные дефекты, требующие предварительного лечения;
- воспаления десен, кровоточивость, другие болезни мягких тканей;
- чувствительность эмали повышенная;
- воспалительные процессы в острой стадии;
- у Пациента имеется индивидуальная непереносимость используемых абразивных паст.
Большинство противопоказаний относятся к относительным. Они подлежат устранению, после чего можно провести шлифовку, восстановив естественный цвет. Но принимать решение о возможности подобных манипуляций может только врач после визуального осмотра и некоторых диагностических мероприятий, если в них возникнет необходимость.
Абразивные материалы для шлифования делят на:
а) естественные (алмаз, корунд, наждак, кварц, минутник, пемза и др.);
б) искусственные (электрокорунд, карборунд/карбид кремния/, карбид бора, карбид вольфрама).
Как отделочный материал, абразивы, применяемые для шлифования, должны отвечать определенным требованиям:
— твердость применяемых материалов должна быть не ниже твердости шлифуемого материала; шлифовальный инструмент “засаливается”, если его твердость излишне велика для обработки данного материала, или преждевременно изнашивается, если эта твердость мала;
— форма зерен абразива должна быть многогранной для обеспечения острия резания;
— материалы должны быть технологичны в применении; обладать способностью склеиваться (скрепляться) и хорошо удерживаться в связующем веществе.
Самым твердым минералом является алмаз, представляющий собой кристаллическую форму углерода. В виде пыли, наклеенной на металлические диски и круги, он служит для препарирования зубов перед покрытием их коронками.
При обработке керамики наиболее ценными качествами в алмазном диске для зубного техника являются гибкость, небольшая толщина и эффективное резание.
Такой инструмент необходим для создания эстетически тонких промежутков между передними искусственными зубами. По данным фирмы “Ренферт” (Германия), инструмент Турбо-Флекс позволяет получить желаемый результат. Существенную роль при этом играет V-образная выемка в диске. Последний имеет толщину 0,15 мм, покрыт с двух сторон алмазной крошкой. Уже при легком давлении достигается эффективное резание керамики.
Полирующий гель имеет предельно высокую концентрацию частиц алмаза микронного размера, что сокращает время полировки до двух минут. Гель наносят с помощью войлочного аппликатора, который не повышает температуру и обеспечивает легкий доступ к любой поверхности зуба.
Корунд — занимает второе место по твердости, он представляет собой кристаллическую форму окиси алюминия (Аl 2O3). В чистом виде (рубин, сапфир) он встречается редко, чаще с различного рода примесями (соединениями железа и кремния). В такой форме он представляет собой непрозрачный кристалл синевато-серого, грязно-желтого или серо-коричневого цвета, обладающий очень большой твердостью и содержащий до 90% и более глинозема.
Корунд изготавливается также искусственным путем из минерала боксита, в котором глинозем содержится не в кристаллическом, а в аморфном виде. Для получения кристаллического глинозема (корунда), производится плавка боксита в смеси с коксом. Твердость искусственного корунда с увеличением содержания окиси алюминия повышается. Особотвердые высшие сорта корунда применяются для шлифовки прочных сталей.
Наждак — шлифовальный материал, добывается из горной породы. В его состав входят корунд, соединения окиси железа и другие материалы. Твердость наждака близка к твердости корунда. Наждачный порошок применяют для шлифования и изготовления наждачного полотна и наждачной бумаги. Шлифовальные качества зависят от процентного содержания корунда. Наждачную бумагу и диски применяют для шлифования протезов и пломб.
Карборунд получают искусственным путем, для чего смесь, состоящую из кокса, чистого кварцевого песка, древесных опилок и поваренной соли, плавят в электропечи. Он состоит из кристаллов карбида кремния. Зерна карборунда отличаются остротой своих граней и высокой твердостью. Существенным недостатком карборунда является значительная хрупкость. Его зерна легко раскалываются при нагрузке. Карборунд применяется главным образом в виде шлифовальных кругов и дисков.
Пемза — горная порода, образованная при вулканических извержениях, имеет пористое строение. Края пор очень острые. Цвет пемзы в зависимости от содержания окислов железа бывает разным: от белого и голубого до желтого, красного и даже черного.
Для изготовления абразивных инструментов применяются связующие материалы. Назначение их сводится к скреплению (цементированию) абразивных зерен после их измельчения и просеивания через сита с определенным количеством отверстий.
Рекомендации врача
После завершения процедуры необходимо соблюдать советы стоматолога:
- коррекция рациона на первое время, отказ от кофе или чая, окрашивающих продуктов или фруктов, в состав которых входят активные кислоты;
- включение в меню блюд со средней температурой, что защитит от болезненности и неприятных ощущений в первые пару дней;
- ограничить прием спиртных напитков, курения.
Также следует постоянно уделять внимание личной гигиене. Это чистка с применением специальных щеток и паст, использование ирригаторов и ополаскивателей. Профилактические приемы минимум раз в полгода помогут контролировать состояние ротовой полости, своевременно выявлять проблемы и начинать лечение при необходимости.
Связующие материалы делят на:
— керамические;
— бакелитовые;
— вулканитовые.
Керамические связующие материалы основаны на применении смеси глины с полевым шпатом, тальком и другими веществами, например кварцем. Эта связка огнеупорна и обладает высокой механической прочностью.
Применяется для изготовления различного рода шлифовальных кругов.
Недостатками изделий на этой основе являются хрупкость и высокая чувствительность к ударам. Поэтому изделия на керамическом связующем материале применяются в установках с малыми оборотами. Достоинствами подобной связки являются влагостойкость и равномерная твердость.
Бакелитовые связующие материалы готовятся на основе бакелита, реже — каучука и различных клеевых композиций.
Бакелит — искусственная смола, образующаяся при взаимодействии фенолов или крезолов с формальдегидом. После наполнения абразивом и горячего прессования получается достаточно прочный инструмент.
Он нашел широкое применение в зубопротезной технике. Круги либо иные формы абразивов на этой основе отличаются упругостью, ударостойкостью, гладкой поверхностью. Этот вид связки применяется также для изготовления наждачной или стеклянной бумаги, наждачного полотна.
Недостатком данной связки является меньшая прочность сцепления с абразивными зернами по сравнению с керамическими материалами.
Вулканитовые связующие материалы основаны на применении смеси каучука с серой, которая после введения абразивного порошка подвергается вулканизации. Указанные связки обладают еще большей упругостью и плотностью, чем бакелитовые, но отличаются эластичностью.
Круги на вулканитовой связке являются незаменимыми при шлифованиии, когда от круга требуется не только шлифующее, но и полирующее но действие. Последнее объясняется размягчением связки при температуре около 150° С и выдавливанием абразивных зерен в эту размягченную связку.
Абразивный инструмент на бакелитовой и вулканитовой связке очень прочен и даёт хорошие результаты.
Шлифовальные материалы
Некоторые шлифовальные материалы (пемза, наждак) применяются в виде водной суспензии, которая наносится на обрабатываемую поверхность с применением щеток, войлочных кругов (конусов) и других приспособлений.
Процесс шлифования и качество обрабатываемой поверхности зависят от многих факторов. Основными из них являются:
— качество абразива и соблюдение технологии шлифования;
— выбор размера зерен (зернистости);
— скорость движения абразива;
— величина давления абразива на поверхность;
— учет тепловых явлении при шлифовании и др.
Зерна для шлифования сортируются по величине при помощи фракционного просеивания.
По зернистости абразивные материалы делят, как правило, на 3 группы:
— шлифзерно;
— шлифпорошки;
— микропорошки.
Скорость движения абразива в процессе шлифования также имеет большое значение. Чем медленнее движется абразив, тем большую стружку снимает зерно абразива и, следовательно, тем больше разрушающее усилие испытывает абразивное зерно. При быстром движении по поверхности обрабатываемого изделия абразив снимает меньшую стружку и поэтому испытывает меньшее сопротивление, а следовательно, меньше изнашивается.
При одинаковой скорости грубые абразивные частицы снимают больше материала с обрабатываемого изделия, оставляя более глубокие трассы. Оптимальная скорость абразива с сохранением его эффективной абразивной способности зависят от вида абразивного материала. Для большинства из них оптимальная скорость равна 25—30 м/с.
Использование абразивов неотъемлемо связано с применением давления на поверхность. Приложенное давление должно быть умеренным, чтобы не привести к поломке протеза или инструмента. Кроме того, излишнее давление приводит к разогреву инструмента и поверхности объекта, подвергающегося шлифовке.
Причиной образования тепла при шлифовании является трение абразивных зерен о поверхность. Так как абразивный круг (либо иная форма) не является теплопроводным, и толщина снимаемого слоя весьма незначительна, возникающее тепло передается массе изделия.
Высокие температуры, хотя их воздействие и кратковременно, способны привести к изменению структуры металла (сплава) или деформациям пластмасс. Все это приводит к снижению прочности и износоустойчивости шлифуемого изделия.
Эффект перегрева особенно опасен при отделке пластиночного протеза (аппарата). Перегрева нужно и можно избежать, соблюдая правильный режим шлифования. Сказанное в еще большей степени относится к препарированию зуба. Пренебрежение этим правилом приводит к ожогу пульпы и ее гибели.
После полимеризации, извлечения из кюветы и отделения гипса протез подлежит отделке. Отделку производят вручную штихелями и шаберами различной формы, напильниками, металлическими карборундовыми фрезами при помощи бормашины или шлифмотора.
Обработка протеза начинается со снятия излишков пластмассы, образовавшихся за счет грата на краю базиса, по линии соединения частей кюветы. Закругление краев проводят шлифовальными камнями и карборундовыми головками. После этого приводят базис протеза к требуемой толщине. Обработку ведут, постоянно перемещая протез в руках, чтобы обрабатываемая поверхность получалась ровной. Пальцы рук должны находиться над тем участком, которые обрабатывается. Отпечатки естественных зубов сохраняют, снимая излишки пластмассы металлическими фрезами.
Штихелями и шаберами удаляют неровности у шеек зубов и между зубами. В результате обработки поверхность, обращенная к языку, слизистой щек и губ должна быть ровной, не волнистой. На ней не должно быть грубых царапин. Протез должен иметь одинаковую толщину. Дистальный край верхнего протеза постепенно истончают, чтобы пациент меньше чувствовал переход от базиса к слизистой оболочке, чтобы легче проходил пищевой комок. Сторона, обращенная к слизистой оболочке протезного ложа, освобождая от гипса и наплывов пластмассы, появившихся во время прессовки. Другой какой-либо обработки этой поверхности не производится и не допускается. Затем переходят к шлифовке, а дальше к полировке.
Полировочные средства
Полирование — обработка изделий для получения гладкой зеркальной поверхности производится разными методами:
— механическим (обработкой абразивным инструментом, пластическим деформированием поверхности);
— электрохимическим и др.
Полированием предусмотрено снятие минимального слоя материала, для чего инструменты покрываются специальными пастами. В состав этих паст входят абразивные и связующие материалы. Процессу полирования предшествует тщательное шлифование. При полировании применяются инструменты, аналогичные употребляемым при шлифовании, но с иной более мелкой структурой.
К полировочным абразивам, применяемым в зубопротезной технике, относятся оксид железа (Fe2О3), оксид хрома (Сг2О 3), а также гипс и мел (СаСО3). Оксид железа (крокус) получают путем воздействия щавелевой кислоты на концентрированный раствор железного купороса. Он представляет собой мелкодисперсный порошок буро-красного цвета.
Оксид хрома получают путем прокаливания смеси бихромата калия с серой. После тщательной обработки осаждается темно-зеленый осадок, кристаллы которого значительно тверже кристаллов крокуса. Кристаллы указанных окислов служат абразивами при изготовлении полировочных паст. Связующими материалами этих паст являются стеарин, парафин, вазелин и др. подобные вещества.
В настоящее время широкое применение нашли специальные пасты, предложенные Государственным оптическим институтом (ГОИ), которые имеют грубую, среднюю и тонкую зернистость.
Пасты подобного назначения выпускаются многими фирмами. Так, например, фирма “Шулер-Дентал” (Германия) производит целую гамму полировочных паст в виде брусков:
— белая паста — для полировки каркасов протезов из сплавов золота, неблагородных сплавов и доведения их поверхности до зеркального блеска;
— желтая паста — для предварительной полировки каркасов из твердых благородных сплавов;
— розовая паста — для предварительной полировки изделий из ко-бальтохромовых сплавов;
— зеленая паста — для доведения до зеркального блеска изделий из кобальтохромовых сплавов;
— бежевая паста — универсальная, для полирования пластмассовых изделий.
Аналогичные полировочные пасты для сухой полировки изделий из благородных и неблагородных сплавов и пластмассы в разной цветовой гамме выпускает фирма “Бего” (Германия). Этой же фирмой для полировки самых твердых сплавов металлов и керамики рекомендуется алмазная полировочная паста Диапол, которая поставляется в специальном дозирующем шприце.
Она особенно необходима в ситуациях, когда в керамике требуется полировать сошлифованные места, а обжиг уже не проводится. Материал очень экономичен в употреблении: на одну металлокерамическую коронку или зуб расходуется не более 3 мм пасты.
Паста Хай-Лайт производства фирмы “Ренферт” (Германия) поставляется в шприце для шлифования фарфора внутри полости рта.
Технология шлифовки и полировки
Шлифовку проводят наждачной бумагой. Начинают крупнозернистой или новой бумагой, а заканчивают более тонкой . Шлифовку можно проводить вручную, но лучше и быстрее это получается на шлифмашине с использованием специальных держателей наждачной бумаги. При механической шлифовке нужно проявлять особую осторожность, чтобы не поломать протез или не сошлифовать искусственные зубы. Отшлифованные протезы должны иметь гладкую поверхность без царапин и шероховатостей и гладкие закругленные края.
Полировку проводят, используя шлифмотор с фиксированной в ней коническим фильцами, ворсянистыми щетками различной жесткости и нитяными щетками-пуховками. Полировочные средства применяют в кашицеобразном виде, и только плечи кламмеров полируют пастами. Полировочной массой увлажняют протез, смазывают фильц и подносят протез к фильцу, чтобы не перегреть протез и не деформировать его. Полировать можно только увлажненные поверхности, без большого нажима с постоянным контролем за наличием указательного пальца под этим участком. Чтобы протез не вылетал из рук, подносить его к вращающейся щетке надо под острым углом. Зубы и участки около них фильцем не полируют. Фильц заменяют на щетку с коротким ворсом и полируют те участки, которые не были отполированы фильцем, а именно: зубы, околозубные участки и межзубные промежутки. Затем полируют весь протез щетками с длинным ворсом. Зеркальный блеск пластмассе придают нитяной щеткой с применением талька или мела, замешанные на воде. Металлические части протеза полируют другими щетками и фильцами с применением пасты ГОИ. Чтобы паста не проникла в участки между металлом и пластмассой, их закрывают липким пластырем. Хорошо отполированный протез гигиеничен, меньше подвергается воздействию пищевых остатков, меньше поглощает влаги в процессе пользование им. Закончив полировку протез промывают щеткой с мылом и насухо вытирают.
Зерна высокой твердости с острыми кромками могут быть в свободном (порошки), в связанном (наждачная бумага, полотно) и цементированном виде (круги, головки, сегменты, конусы, бруски и т. п.). В большинстве случаев шлифование является отделочно-доводочной операцией, обеспечивающей высокую точность (иногда до 0,002 мм) и чистоту поверхности .
Основные цели проведения шлифовки и полировки зубов
Процедура рекомендуется после того, как была проведена профессиональная ультразвуковая чистка с удалением зубного камня и толстого слоя налета.
Стоматологи ставят две основные цели, которые можно достичь. Основная – гигиеническая. На поверхности зубов значительно уменьшается уровень накопления болезнетворных бактерий.
Не менее важна и эстетика. Когда зуб гладкий и отполированный, он красиво блестит, улыбка становится ярче.
В ряде случаев стоматологи рекомендуют выполнение полировки зубов после того, как вы вылечите кариес. Здесь выравнивается не только эмаль, но и сама установленная пломба.
Устраняются и небольшие дефекты, которые могли бы стимулировать накапливание налета в местах соприкосновения пломбировочного материала и соседнего зуба.