Из этой статьи вы узнаете:
- структурные компоненты эмали,
- строение ее органической и неорганической матрицы,
- снимки электронной микроскопии.
Зубная эмаль (enamelum) – является внешней оболочкой коронковой части зуба, представляя из себя самую твердую ткань в организме человека. Такая твердость объясняется тем, что эмаль зуба на 95-97% состоит из минеральных компонентов (преимущественно фосфата кальция в виде кристаллов гидроксиапатита). На долю органических веществ приходится только 1-2%, плюс еще около 2-3% воды. Самыми прочными являются поверхностные слои эмали – особенно на окклюзионных поверхностях зубов, а по направлению к эмалево-дентинной границе, а также при приближении к шейке зуба – ее твердость снижается.
Твёрдость эмали составляет 397,6 кг/мм², что сопоставимо с кварцем. Такая твердость позволяет ей противостоять запредельным механическим нагрузкам, однако с другой стороны – делает ее очень хрупкой. Эмаль зубов человека не растрескивается и не скалывается только благодаря наличию под слоем эмали – слоя дентина, который обладает умеренным коэффициентом эластичности. Тем не менее, не смотря на твердость, эмаль обладает хорошей проницаемостью для ионов кальция и фтора, содержащихся в слюне (или зубных пастах и ополаскивателях), а также для пигментов, содержащихся в пище и напитках.
Строение и развитие эмали зуба –
Эмаль зубов может иметь разные оттенки – от желтого до различных оттенков серого и белого цветов, что зависит от коэффициента ее прозрачности. Чем эмаль более прозрачна, тем сильнее будет просвечивать сквозь нее подлежащий слой дентина, физиологически имеющий желтый цвет. Кроме того, эмаль может иметь голубой оттенок – у режущих краев резцов (где нет слоя подлежащего дентина), а также у молочных зубов. Прозрачность эмали зависит от степени ее минерализации и гомогенности, что связано с соотношением ее органической и неорганической матриц. Также прозрачность зависит и от толщины слоя эмали.
Толщина эмали будет отличаться на разных поверхностях коронки зуба. Например, у постоянных зубов толщина эмали колеблется от 1,7 до 2,5 мм – в области жевательных бугров моляров, и до всего лишь 0,01 мм – в пришеечной части зуба (где эмаль будет граничить с цементом корня). Таким образом, чем ближе к шейке зуба, тем ее толщина будет уменьшаться. У молочных зубов толщина эмали будет еще в два раза меньше, чем у постоянных, не превышая 0,8-1,0 мм.
Органическая и неорганическая матрицы эмали –
Зубная эмаль достаточно уникальна, и во многом абсолютно непохожа на другие твердые ткани зуба. Во-первых – эмаль является единственно тканью зуба, которая происходит из эктодермы (развитие всех остальных связано с мезодермой). Во-вторых – если органический матрикс других тканей зуба образован в основном коллагеновыми волокнами, то органическая матрица эмали не содержит коллагена и образована так называемыми «эмалевыми протеинами». В-третьих – кристаллы гидроксиапатита в зубной эмали намного крупнее, чем в других минерализованных тканях зуба.
Последний момент – другие твердые ткани зуба в течение жизни индивида продолжают синтезироваться клетками (одонтобластами и цементобластами, соответственно), но в зрелой эмали клеточные элементы отсутствуют, и поэтому после ее созревания – никакого роста происходить уже не может. Это связано с резорбцией клеток-энамелобластов в процессе энамелогенеза.
1) Органическая матрица зубной эмали –
Выше мы уже сказали, что органическая матрица зубной эмали состоит из неколлагеновых протеинов (белков), которые являются продуктом секреции энамелобластов, и их называют термином «эмалевые протеины». Функция органической матрицы заключается в адсорбции минеральных веществ, что приводит к образованию кристаллов апатита вокруг эмалевых протеинов. Однако по мере созревания эмали – органическая матрица почти полностью утрачивается.
Все эмалевые протеины условно делят на четыре вида – 1) энамелины и 2) амелогенины, 3) амелобластины и 4) тафтелины. Энамелины – это кислые гликопротеины с большой молекулярной массой, которые характеризуются высоким содержанием глицина, серина, аспарагиновой и гамма-карбоксиглутаминовой кислот. В свою очередь амелогенины – это гидрофильные гликопротеины (в 2 раза меньшей молекулярной массы), обогащенные пролином, лейцином, гистидином и гамма-карбоксиглутаминовой кислотой.
Амелобластины и тафтелины встречаются только в период амелогенеза (формирования эмали). Кроме энамелинов и амелогенинов в органической матрице зрелой эмали также присутствуют и гликозаминогликаны, протеогликаны, а также различные классы липидов. Все эти органические вещества так или иначе участвуют в процессах минерализации органической матрицы (кальцификации протеинов).
2) Неорганическая матрица эмали –
Согласно исследованиям Е.В. Боровского в зубной эмали содержатся следующие неорганические соединения (усредненные значения):
- гидроксиапатит [Ca10(PO4)6(OH)2] – 75,04 %
- карбонат-апатит [Ca10(PO4)6(CaCO3)2] – 12,06 %,
- хлорапатит [Ca10(PO4)6(Cl)2] – 4,39 %,
- фторапатит [Ca10(PO4)6(F)2] – 0,66 %,
- карбонат кальция – 1,33 %,
- карбонат магния – 1,62 %.
В составе этих соединений содержание кальция составляет около 37 %, а фосфора – около 17 %. Таким образом, основной минеральной солью в составе эмали (также как и дентина, и цемента корня зуба) – является «фосфат кальция» в форме кристаллов апатита, которые дополнительно будут содержать либо гидроксильные остатки, либо карбонатную группу, либо хлор или фтор. Но кроме этих элементов и соединений – в кристаллы эмалевого апатита (в крайне небольших количествах) также включаются свинец, цинк, алюминий, медь, молибден, натрий, стронций, сера, олово и титан.
В поверхностных слоях эмали больше кристаллов апатита, содержащих фтор, свинец или цинк, но в глубоких слоях эмали их содержание будет меньше. При этом, кристаллов апатита с содержанием натрия, магния или карбонатов – наоборот будет больше в области эмалево-дентинного соединения, и меньше в поверхностных слоях эмали (24stoma.ru). Такой «ионный градиент» имеет определенное значение. Например, апатиты с включениями натрия, магния или карбонатов – обладают высокой сопротивляемостью к раскалыванию вдоль эмалевого-дентинного соединения.
Более поверхностно-расположенные апатиты с включениями фтора, свинца и цинка – благодаря этим элементам приобретают особую прочность и сопротивляемость к воздействию кислот. Эмаль с содержанием таких кристаллов апатитов (как, например, фторапатит) – отличается значительной резистентностью к кариесу, т.к. фторапатит начинает разрушаться при более низком значении pH – по сравнению с обычным гидроксиапатитом. Например, для обычного гидроксиапатита критическим значением рН будет 5,5, но для фторапатита – рН 4,6.
Кроме того нужно отметить, что кристаллы гидроксиапатита эмали (в сравнении с дентином и цементом) – будут иметь значительно больший размер. К примеру, в дентине кристаллы гидроксиапатита имеют длину 20 нм, ширину 18-20 нм, толщину 3,5 нм, что говорит о их мелком размере и иглообразной форме. В свою очередь в эмали – кристаллы гидроксиапатита имеют вид пластинок гексагональной формы с длинной около 200 нм (но могут встречаться и кристаллы размером от 500 до 600 нм), шириной 40–90 нм и толщиной в среднем 25–40 нм.
Важно: в связи с отсутствием в зрелой эмали энамелобластов – эмаль не имеет способности к регенерации (как цемент корня зуба или дентин). Однако не смотря на это, неорганический матрикс эмали находится в процессе постоянного ремоделирования – благодаря непрекращающимся процессам минерализации/ деминерализации. Причем поступление в эмаль ионов кальция, фосфора, фтора – происходит не только из слюны, но и со стороны дентина и пульпы зуба (благодаря так называемым «эмалевым веретенам»).
Строение зубной эмали –
Главной структурной единицей эмали являются так называемые «эмалевые призмы», между которыми располагается межпризматическое вещество, склеивающее призмы между собой. В этом разделе мы разберем их строение, а также расскажем о структуре кристаллов апатитов, структуре межпризматического вещества, а также таких образованиях – как эмалевые пластинки и пучки, эмалевые веретена.
1) Эмалевые призмы и их структура –
Эмалевые призмы формируются из кристаллов апатита, которые адсорбируются на органической матрице. Последняя имеет фибриллярную структуру – в виде тонкой белковой сеточки, которая равномерно пронизывает все призмы и межпризматическое вещество. Сами призмы имеют форму тонких удлиненных образований, которые проходят через всю толщу эмали – от эмалево-дентинной границы к поверхности зуба (рис.4-5). Эмаль одного зуба состоит в общей сложности из нескольких миллионов эмалевых призм.
Продольное сечение эмалевых призм –
Толщина призм колеблется от 3 до 6 мкм, причем по мере приближения от эмалево-дентинной границы к поверхности зуба – их диаметр увеличивается примерно в 1,5-2 раза. Связано это с тем, что площадь эмалево-дентинного соединения (откуда начинаются призмы) – значительно меньше площади поверхности зубной эмали. Призмы имеют радиальное направление и лежат по отношению к эмалево-дентинной границе – почти под прямым углом. Но, что касается поверхности эмали, то в области окклюзионных поверхностей они будут лежать параллельно длинной оси зуба, а на боковых поверхностях коронки – перпендикулярно оси зуба.
Что касается длины эмалевых призм, то она будет зависеть от толщины слоя эмали на разных поверхностях коронки зуба, и при этом длина каждой призмы будет в любом случае больше толщины слоя эмали. Последнее становится возможны благодаря тому, что собранные из эмалевых призм пучки – по своему ходу имеют волнообразные изгибы (в виде буквы S). Появление у эмали такой радиальной структуры с выраженными S-образными изгибами – связывают с функциональной адаптацией, препятствующей появлению радиальных трещин под воздействием окклюзионной нагрузки (рис.6).
Поперечное сечение эмалевых призм –
На поперечных шлифах зубов призмы могут иметь овальную, гексагональную, полигональную, но чаще всего – форму аркад, которые напоминают рыбью чешую или замочную скважину (рис.7). Согласно R.Frank такая форма призм возникает из-за неравномерной минерализации эмалевых призм, происходящей в процессе их развития. Таким образом, одна сторона призм минерализуется и становится твердой раньше, чем другая, что и вызывает сдавление более мягкой части призмы. Согласно исследованиям J.Saot и N.Symons – только 2% призм имеют правильную гексагональную форму, 57% – форму аркад, еще 31% призм были полигональными или овальными, а еще 10 % имели неправильную форму.
Стоит отметить, что поверхность каждой эмалевой призмы окружена оболочкой, которую называют «корой призмы». Тем не менее, такая оболочка не рассматривается как самостоятельное образование, и ее отличает то, что она менее минерализована и содержит значительно больше эмалевых протеинов, чем остальная часть призмы. Как следствие – оболочка более устойчива к воздействию кислот (по сравнению с сердцевиной призмы). Ниже вы можете увидеть снимок электронной микроскопии, на котором изображена эмаль, подвергнутая кислотной деминерализации в течении 5 дней (рис.8). Как мы видим – сохранилась только внешняя оболочка призм и межпризменное вещество.
Эмалевые призмы после деминерализации –
Беспризменная эмаль –
Однако самый внутренний слой эмали, прилежащий к эмалево-дентинной границе, не содержит эмалевых призм. Этот слой часто называют термином «начальная эмаль» (толщина этого слоя всего 5-10 мкм). Этот слой эмали состоит исключительно из мелких кристаллов гидроксиапатита толщиной всего 3-5 нм. Образование беспризменной эмали связано с тем, что в начальном периоде ее образования у энамелобластов еще отсутствуют волокна Томса (отростки Томса). Лишь позже у энамелобластов начинают формироваться короткие протоплазматические отростки, которые и дают начало эмалевым призмам.
Аналогичным образом формируется и внешний слой зубной эмали (на завершающих этапах ее развития). В этот период у энамелобластов отростки Томса уже исчезают, и поэтому самый поверхностный слой эмали (конечная эмаль) – тоже будет лишен эмалевых призм. Слой так называемой «конечной эмали» более выражен в зубах постоянного прикуса, а вот у молочных зубов электронная микроскопия показывает преимущественно призменную структуру поверхностного слоя зубной эмали.
2) Особенности кристаллов апатитов –
Выше мы уже говорили, что из разных видов кристаллических апатитов – эмаль больше всего содержит именно гидроксиапатит [Са10(РО4)6(ОН2)], доля которого составляет 75%. Кристаллы гидроксиапатита покрыты гидратной оболочкой толщиной в 1 нм. Микропространства между кристаллами апатитов заполнены водой, которую называют эмалевой жидкостью. Содержание воды в эмали составляет около 2-3%, а ее функцией является перенос ионов, что и обеспечивает процессы минерализации/ деминерализации.
В свою очередь сами кристаллы гидроксиапатита имеют вид пластинок гексагональной формы – со средней длиной около 200 нм (но могут встречаться и кристаллы размером 500-600 нм, и даже до 1000 нм), а также шириной 40-90 нм и толщиной 25-40 нм. Направление оси кристаллов по отношению к длинной оси призмы отличается на ее разных участках. В центральной части кристаллы будут лежать параллельно длинной оси призмы, а на периферии – они удаляются от этой оси, образуя с ней все больший угол. Например, при аркадной форме эмалевых призм этот угол составит порядка 40–65°.
3) Межпризматическое вещество –
Выше мы уже говорили, что эмалевые призмы как бы зацементированы в тонком слое межпризматического вещества, толщина которого составляет менее 1 мкм (рис.10). Кстати, стоит отметить, что при аркадной конфигурации эмалевых призм – последние настолько плотно контактируют друг с другом, что межпризматическое вещество между ними практически полностью отсутствует. Межпризматическое вещество также состоит из кристаллов апатитов, которые расположены под углом к эмалевым призмам (часто даже под углом 90°).
Межпризматическое вещество является менее минерализованным, чем сами эмалевые призмы, и поэтому в сравнении с ними – оно обладает меньшей прочностью. Вследствие этого возникающие в эмали трещины обычно проходят именно по межпризматическому веществу, не затрагивая самих призм. Ниже вы можете увидеть продольный и поперечный срезы эмали, на которых между эмалевыми призмами располагаются кристаллы межпризматического вещества (под углом к эмалевым призмам).
Зубная эмаль (снимок электронной микроскопии) –
4) Эмалевые пластинки и эмалевые пучки –
Такие образования присущи для зрелой эмали (рис.12-13). И пластинки, и пучки представляют из себя маломинерализованные участки эмалевых призм и межпризматического вещества, отличаясь друг от друга только положением и формой. Эмалевые пластинки представляют из себя очень тонкие «листообразные» структуры, которые проходят через всю толщу эмали (больше всего их в области шейки зуба). Они содержат эмалевые протеины, а также органические вещества из полости рта.
На шлифах эмали они выглядят точно также как и трещины эмали, но только заполнены органическим веществом. Нужно отметить, что они могут служить входными воротами для развития кариеса. В свою очередь эмалевые пучки – это мелкие конусовидные образования (напоминающие по форме «колосящиеся пучки травы»), которые отходят от эмалево-дентинной границы. Расстояние между пучками составляет примерно от 30 до 100 мкм.
5) Эмалевые веретена –
Эмалевыми веретенами называют колбообразные структуры, которые отходят от эмалево-дентинной границы под прямым углом (рис.14). Их образование связано с тем, что в период развития зуба часть отростков одонтобластов проникают за эмалево-дентинное соединение, что по видимому необходимо для коммуникаций между одонтобластами и секреторными энамелобластами. Таким образом, эмалевые веретена структурно представляют из себя дентинные трубочки.
Помимо отростков одонтобластов эмалевые веретена точно также содержат тканевую жидкость и другие органические компоненты. По мнению большинства авторов – эмалевые веретена играют важную роль в минерализации глубоких слоев эмали со стороны пульпы зуба. Ниже вы можете увидеть, как именно выглядят эмалевые веретена:
6) Что такое полосы Гунтера-Шрегера –
Выше мы уже говорили, что эмалевые призмы имеют по своему ходу волнообразную изогнутость (в форме букв S). Это приводит к тому, что на продольном шлифе зуба – невозможно разрезать каждую эмалевую призму строго продольно вдоль ее длинной оси и на всем ее протяжении. Поэтому получается, что одни участки призм в любом случае будут сошлифованы в продольном направлении, а их продолжения – в поперечном или косом направлениях. Участки призм, которые будут рассечены продольно – выглядят светлыми (паразоны). Участки призм, рассеченные поперечно, будут выглядеть темными (диазоны).
В результате на шлифе зуба возникает правильное чередование поперечных и продольных шлифов пучков эмалевых призм. При их изучении в отраженном свете – они предстают в виде темных и светлых полос, пересекающих по дуге всю толщину эмали в радиальном направлении. Они начинаются от эмалево-дентинного соединения и заканчиваются в поверхностном слое эмали. Такие полосы и назвали полосами Гунтера-Шрегера, и их можно хорошо различить даже при небольшом увеличении (рис.15-16).
Этапы формирования зубов у детей
Мало кто из будущих родителей знает, что фундамент молочным зубам их ребенка начинает формироваться уже на 7 неделе беременности, а с 5 месяца происходит закладка постоянных зубов. Будущее стоматологическое здоровье малыша целиком зависит от привычек, образа жизни и питания мамы.
В возрасте 6-8 месяцев прорезываются первые зубы у малышей — два нижних резца. Затем в возрасте 8-9 месяце появляются два верхних. Сроки прорезывания зубов достаточно индивидуальны и зависят, в том числе, и от генетических факторов. Вариантами нормы считается прорезывание первых зубов в 5-9 месяцев. Постепенно прорезываются третьи, четвертые и пятые зубы. Формирование временного прикуса завершается к 2,5-3-м годам, когда у ребенка появляется 20 молочных зубов — по 5 зубов с каждой стороны на верхней и нижней челюстях.
При этом процесс созревания эмали молочных зубов происходит еще в течение 2-х лет после того, как зуб прорезался в полости рта, т.е. эмаль на центральных резцах окончательно созревает примерно к 3 годам, а на боковых зубах, соответственно, еще позже. По своему анатомическому строению детский молочный зуб отличается от постоянного: стенки его намного тоньше. Например, на боковой поверхности толщина твердых тканей молочного зуба (эмаль, дентин) составляет всего 1 мм. Такой зуб, по сравнению с постоянным, является намного более уязвимым для возникновения различного рода проблем — в первую очередь, это развитие кариеса и его осложнений. А если зуб еще формируется, эмаль находится в стадии созревания, то он может разрушиться очень быстро, особенно на фоне резкого снижения иммунитета ребенка: во время и после вирусной инфекции, после перенесенного заболевания с лечением антибиотиками.
В возрасте 6-7лет начинается физиологическая смена временных зубов на постоянные. Порядок их появления такой же, как и при прорезывании временных зубов. Первыми появляются нижние и верхние центральные резцы, одновременно с ними — так называемые шестые зубы: сначала — нижние, потом — верхние. Шестые зубы не меняются, а вырастают. Схема появления всех зубов схожа: сначала над десной становятся заметны бугорки, потом — жевательная поверхность. В тот момент, когда зуб прорезывается, его корень сформирован примерно наполовину, он короткий и имеет широкий просвет канала. В процессе своего формирования корень растет в длину, утолщаются его стенки.
Последний молочный зуб меняется к 11-12 годам. При этом на протяжении двух лет после прорезывания идет созревание эмали, а формирование корня постоянного зуба длится еще дольше: от 2-х до 4-х лет. Таким образом, только в подростковом возрасте можно говорить о том, что положение стабилизировалось.
Важно знать!
С момента прорезывания первых зубов в возрасте около 6 месяцев и до 3 лет у ребенка формируется временный прикус. Молочный зуб по своему анатомическому строению отличается от постоянного, стенки его намного тоньше, а значит, и риск возникновения кариеса выше. Поэтому профилактические осмотры у доктора мы рекомендуем проходить раз в 3-4 месяца. Родителям разглядеть начинающийся кариес в труднодоступном месте не просто, а начавшийся процесс может развиться слишком быстро и привести к нежелательным последствия. В этом же возрасте мы рекомендуем впервые посещать врача-ортодонта, чтобы при необходимости вовремя скорректировать формирование прикуса. В возрасте 6-7 лет начинается процесс физиологической смены временных зубов на постоянные, который завершается к 11-12 годам. При этом созревание эмали и формирование корня постоянных зубов продолжается еще 2-4 года после появления зуба. Таким образом, зубы окончательно формируются и занимают свое место в полости рта лишь к 16 годам. До этого момента важно уделять повышенное внимание гигиене и профилактике.